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® Sa partie analytique utilise des outils d’analyse (limites, continuité, analyse
complexe, intégration, efc.) pour répondre a ces questions.

nalytique des nombres 13 novembre 2024



Théorie analytique des nombres

* Qu’est-ce que la théorie analytique des ?

e La s’intéresse a des questions concernant les nombres entiers :

* Est-ce que, pour n > 3, 'équation 2™ + y™ = 2" admet des solutions avec x,y, z € Z et
zyz #07?

e Est-ce que tout entier pair supérieur a 2 peut s’écrire comme la somme de deux nombres
premiers ?

® Soit n € N*. Existe-t-il un triangle rectangle a c6tés rationnels dont 1’aire vaut n ?

® Soit m > 2. De combien de maniéres est-il possible d’avoir m = (Z) ?

® Sa partie analytique utilise des outils d’analyse (limites, continuité, analyse
complexe, intégration, efc.) pour répondre a ces questions.

e Elle est particulierement adaptée pour étudier les nombres premiers.
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Une preuve vieille comme le monde

Théoreme. (Euclide, -300 av. J.-C.)

11 existe une infinité de nombres premiers.

® Sipi,...,prsont des nombres premiers, on pose N =1+ p1 X -+ X pr.

e Alors N > 2 donc admet un facteur premier p. Mais p # p; sinon p diviserait
N—p1 X---Xpr=1!

e Donc la liste ps, . . ., pr est incomplete.

* On peut extraire de la preuve d’Euclide que p, = O (22n) (trés mauvais...).
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Infinité de nombres premiers

Euler

e Conclusion :

Z % > Inln(z) + O(1).

p<z

* La série des inverses des nombres premiers diverge (trés lentement), il y a donc une
infinité de nombres premiers !

® On peut I'expliquer par le fait que Z % diverge.
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Compliquons la question

e Il existe une infinité de nombres premiers de la forme 4n + 3 :
N =4p; X --- X pr + 3 est congru a 3 modulo 4 donc a au moins un facteur premier
congru a 3 modulo 4!

e Il existe une infinité de nombres premiers de la forme 4n + 1:
N = 4(p1 x - -+ x pr)? + 1 a un facteur premier p tel que
(2p1 X -+ x pr)? = —1mod p d’oit p = 1 mod 4 (une racine carrée de —1 est un
élément d’ordre 4 dans le groupe (Z/pZ)™).

¢ Est-ce qu’il existe une infinité de nombres premiers de la forme 10n + 3 (i.e. avec
pour chiffre des unités 3) ? Il semble compliqué d’en trouver une démonstration
élémentaire...

Alexandre Bailleul Théorie analytique des nombres 13 novembre 2024
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Dirichlet

Théoréme. (Dirichlet, 1837)

Soit a, ¢ € Z premiers entre eux. Alors il existe une infinité de nombres premiers
de la forme gn + a.
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Infinité de nombres premiers

Dirichlet

Théoréme. (Dirichlet, 1837)

Soit a, ¢ € Z premiers entre eux. Alors il existe une infinité de nombres premiers
de la forme gn + a.

¢ Conséquences :
* Une infinité de nombres premiers avec pour chiffre des unités 1, ou encore 3, ou 7, ou 9.

* Sinn’est pas de la forme 4% (8k + 7) alors il existe z,y, z € N tels que n = 22 + y? + 22
(théoreme des trois carrés).

o Sin estun carré modulo tout nombre premier alors n est un carré d’entier ("principe
local-global").
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Démonstration dans un cas simple

e Montrons le résultat a la maniére de Dirichlet (inspiré d’Euler) pour ¢ =4 eta = 1.
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Démonstration dans un cas simple

e Montrons le résultat a la maniére de Dirichlet (inspiré d’Euler) pour ¢ =4 eta = 1.
On considere les produits
1
Li(s) = H 1— L

p#2 P°
et
1
Lo(s) = [[ ——=
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e
pour s > 1.
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Infinité de nombres premiers

Démonstration dans un cas simple

e Montrons le résultat a la maniére de Dirichlet (inspiré d’Euler) pour ¢ =4 eta = 1.
On considere les produits
1
Li(s) = H 1— L

p#2 P°
et
1
Lo(s) = [[ ——=
pr21— D 2
e
pour s > 1.

e Alors comme avant .
InL = — +0(1
1) = +0()
P#2
et
(_1)T
InLy(s) = ~—— 4+ 0(1).
2(5) =D 2 (1)

PF#2
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Démonstration dans un cas simple

® On en déduit que

%(le(s) Fla(s) = Y —+0().

p=1mod4
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Démonstration dans un cas simple

® On en déduit que

%(le(s) Fla(s) = Y —+0().

p=1mod4
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n impair
et (—1)r
Ly(s) = BT

n>1
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Démonstration dans un cas simple

® On en déduit que

%(le(s) Fla(s) = Y —+0().

p=1mod4

e Or 1
Lis)= Y —
n impair
et
La(s) =3 U
T L Gn+ 1)
n>1

e DonclnLi(s) — +ooetlnLa(s) — In(%).

s—1+ s—1t
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e Conclusion: E — T, tooet il existe une infinité de nombres premiers de
s—1
p=1mod4 P s

la forme 4n + 1.
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Démonstration dans un cas simple

e Conclusion: E — T, tooet il existe une infinité de nombres premiers de
s—1
p=1mod4 P s

la forme 4n + 1.

e On peut I’expliquer par le fait que Z % diverge et La2(1) = £ #0!
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Infinité de nombres premiers

Démonstration dans un cas simple

e Conclusion: E — T, tooet il existe une infinité de nombres premiers de
s—1
p=1mod4 P s

la forme 4n + 1.

e On peut I’expliquer par le fait que Z % diverge et La2(1) = £ #0!

¢ Plus généralement, chaque cas traité par Dirichlet repose sur le fait que L(1) # 0
pour certaines fonctions L, et c’est la partie la plus difficile de la démonstration.
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Infinité de nombres premiers

Démonstration dans un cas simple

e Conclusion: E — T, tooet il existe une infinité de nombres premiers de
s—1
p=1mod4 P s

la forme 4n + 1.

e On peut I’expliquer par le fait que Z % diverge et La2(1) = £ #0!

¢ Plus généralement, chaque cas traité par Dirichlet repose sur le fait que L(1) # 0
pour certaines fonctions L, et c’est la partie la plus difficile de la démonstration.

e On ne sait pas se passer d’analyse pour démontrer ce résultat !
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Quantité de nombres premiers

Une nouvelle question

¢ Ily a une infinité de nombres premiers (y compris dans des progressions
arithmétiques).

® Question : Peut-on dire combien il y en a en-dessous d"une borne = grande ?

Conjecture (Gauss, 1793).

Sin(z) = #{p < z}, alors
(z) ~ ——
T x——+00 ln s ’
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e Cela implique que —  0:les nombres premiers se raréfient quand x devient

x—+00

grand (théoréme de Legendre, 1808).
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e Cela implique que —  0:les nombres premiers se raréfient quand x devient

x—+00
grand (théoréme de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
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e (C’est cohérent avec le Z 1 > Inln(z) + O(1) d’Euler (on a méme un équivalent).
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Quelques observations

e Celadonnep, ~ nlnn.
n—-+oo

7(x)

e Cela implique que —  0:les nombres premiers se raréfient quand x devient

x—+00
grand (théoréme de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
les entiers.

e (C’est cohérent avec le Z 1 > Inln(z) + O(1) d’Euler (on a méme un équivalent).
p<z

e Beaucoup de conséquences de statistique arithmétique, par exemple si w(n) désigne
le nombre de facteurs premiers de n, alors

%Zw(n)

n<z
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Quelques observations

e Celadonnep, ~ nlnn.
n—-+oo

e Cela implique que ”Ef) —  0:les nombres premiers se raréfient quand x devient

x—+00
grand (théoréme de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
les entiers.

e (C’est cohérent avec le Z 1 > Inln(z) + O(1) d’Euler (on a méme un équivalent).
p<z

e Beaucoup de conséquences de statistique arithmétique, par exemple si w(n) désigne
le nombre de facteurs premiers de n, alors

IEORS D)W

n<z n<z pln
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e Cela implique que ”S”) —  0:les nombres premiers se raréfient quand x devient

x—+00
grand (théoréme de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
les entiers.

e (C’est cohérent avec le Z 1 > Inln(z) + O(1) d’Euler (on a méme un équivalent).
p<z

e Beaucoup de conséquences de statistique arithmétique, par exemple si w(n) désigne
le nombre de facteurs premiers de n, alors

=33 3= 35

n<x n<z pln p<znlzx
pln
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Quantité de nombres premiers

Quelques observations

e Celadonnep, ~ nlnn.
n—-+oo

e Cela implique que ”S”) —  0:les nombres premiers se raréfient quand x devient

x—+00
grand (théoréme de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
les entiers.

e (C’est cohérent avec le Z 1 > Inln(z) + O(1) d’Euler (on a méme un équivalent).
p<z

e Beaucoup de conséquences de statistique arithmétique, par exemple si w(n) désigne
le nombre de facteurs premiers de n, alors

izw(n):i221=izzlzi2ﬁJ

n<x n<z pln p<znlzx p<z
pln
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Quantité de nombres premiers

Quelques observations

e Celadonnep, ~ nlnn.
n—-+oo

7(x)

e Cela implique que —  0:les nombres premiers se raréfient quand x devient

x—+00
grand (théoréme de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
les entiers.

e (C’est cohérent avec le Z 1 > Inln(z) + O(1) d’Euler (on a méme un équivalent).
p<z

e Beaucoup de conséquences de statistique arithmétique, par exemple si w(n) désigne
le nombre de facteurs premiers de n, alors

izw(n):i221=izzlzi2ﬁJ

n<x n<z pln p<znlzx p<z
pln

:Z%+O(1)

p<wm
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Quantité de nombres premiers

Quelques observations

Celadonnep, ~ nlnn.
n—-+oo

Cela implique que ”S”) —  0:les nombres premiers se raréfient quand x devient

x—+00
grand (théoréme de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
les entiers.

e (C’est cohérent avec le Z 1 > Inln(z) + O(1) d’Euler (on a méme un équivalent).
p<z

e Beaucoup de conséquences de statistique arithmétique, par exemple si w(n) désigne
le nombre de facteurs premiers de n, alors

izw(n):i221=izzlzi2ﬁJ

n<x n<z pln p<znlzx p<z
pln

= }17 +0(1) = Inln(z) + O(1).

p<z
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Quantité de nombres premiers

Quelques observations

Celadonnep, ~ nlnn.
n—-+oo

Cela implique que ”S”) —  0:les nombres premiers se raréfient quand x devient

x—+00
grand (théoréme de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
les entiers.

e (C’est cohérent avec le Z 1 > Inln(z) + O(1) d’Euler (on a méme un équivalent).
p<z

e Beaucoup de conséquences de statistique arithmétique, par exemple si w(n) désigne
le nombre de facteurs premiers de n, alors

i}:wm%:i§:§:1=i}:}:lziE:{iJ

n<x n<z pln p<znlzx p<z
pln
1
:§:5+ouqumm+oay

p<wm

("Un entier inférieur &  a en moyenne In In(z) facteurs premiers")
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Quantité de nombres premiers

Idées de démonstration

e L'équivalent m(z) ~ = estappelé le théoréeme des nombres premiers (ou
x—+oo

TNP), démontré par Hadamard et de la Vallée-Poussin en 1896).

13 novembre 2024



Quantité de nombres premiers

Idées de démonstration

e L'équivalent m(z) ~ = estappelé le théoréeme des nombres premiers (ou
x—+oo

TNP), démontré par Hadamard et de la Vallée-Poussin en 1896).

¢ La démonstration repose sur 1’étude de la fonction

+oo
C:S*—)Z%, Re(s) > 1.
n=1
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Quantité de nombre:

Idées de démonstration

e L'équivalent m(z) ~ = estappelé le théoréeme des nombres premiers (ou
x—+oo

TNP), démontré par Hadamard et de la Vallée-Poussin en 1896).

¢ La démonstration repose sur 1’étude de la fonction
+oo 1
C:S*—)ZE, Re(s) > 1.
n=1

¢ L’apport de Riemann par rapport a Euler est de considérer s comme variable
complexe et d’utiliser I'analyse complexe.
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Quantité de nombres premiers

Idées de démonstration

e Onavuque

pour PRe(s) > 1.

e L’analyse complexe permet de prolonger de maniére unique ¢ en une fonction
"raisonnable" (holomorphe) sur C \ {1}.

13 novembre 2024



Quantité de nombre:

Idées de démonstration

e Onavuque

pour PRe(s) > 1.

e L’analyse complexe permet de prolonger de maniére unique ¢ en une fonction
"raisonnable" (holomorphe) sur C \ {1}.

* La clé pour démontrer le TNP est de localiser les zéros de .
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Quantité de nombres premiers

Quel rapport avec les zéros ?

e Pour des raisons techniques, posons

@)= 3 p.

p,kEN*
pk <z

nalytique des nomb; embre 2024



Quantité de nombres premiers

Quel rapport avec les zéros ?

e Pour des raisons techniques, posons

@)= 3 p.

p,kEN*
pk <z

¢ On montre que
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Quel rapport avec les zéros ?

e Pour des raisons techniques, posons

@)= 3 p.

p,kEN*
pk <z

¢ On montre que

13 novembre 2024



Quantité de nombres premiers

Quel rapport avec les zéros ?

e Pour des raisons techniques, posons

v = 3 Inp.

p,kEN*
pk <z

¢ On montre que

@) [ a
m(@) = Zl " In(x) * (ln(w)) '

p<wm

® Avec encore plus d’analyse complexe, on montre la formule explicite suivante :

UOEEEEY “L: — In(27).
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Quantité de nombres premiers

e Comme
P L 2Re(p)

e
comprendre la taille de ¢ (x) (et donc de 7(x)), c’est comprendre la localisation des
zéros de (.

I
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Quantité de nombres premiers

e Comme
P L 2Re(p)

e
comprendre la taille de ¢ (x) (et donc de 7(x)), c’est comprendre la localisation des
zéros de (.

I

¢ En particulier, on montre que le TNP est équivalent au fait que {(1 + it) # 0 pour
toutt € R*!
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Quantité de nombres premiers

e Comme
P L 2Re(p)

e
comprendre la taille de ¢ (x) (et donc de 7(x)), c’est comprendre la localisation des
zéros de (.

I

¢ En particulier, on montre que le TNP est équivalent au fait que {(1 + it) # 0 pour
toutt € R*!

e Toute amélioration de cette information améliore le terme d’erreur dans le TNP.
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Quantité de nombres premiers

e Comme

I

P L 2Re(p)
P ol

comprendre la taille de ¢ (x) (et donc de 7(x)), c’est comprendre la localisation des
zéros de (.

¢ En particulier, on montre que le TNP est équivalent au fait que {(1 + it) # 0 pour
toutt € R*!

e Toute amélioration de cette information améliore le terme d’erreur dans le TNP. La

meilleure estimation possible correspond au fait que {(p) = 0 (et Re(p) > 0)
implique que Re(p) = % (hypothése de Riemann).
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Un probléme additif
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Un probleme additif

Un dernier exemple

e Est-ce que tout entier peut s’écrire comme une somme de carrés ?
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Un probleme additif

Un dernier exemple

e Est-ce que tout entier peut s’écrire comme une somme de carrés ?

o n = a? + b2 si et seulement si pour tout p = 3 mod 4 divisant n, v,(n) est pair (Fermat,
1640).
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e Est-ce que tout entier peut s’écrire comme une somme de carrés ?

o n = a? + b2 si et seulement si pour tout p = 3 mod 4 divisant n, v,(n) est pair (Fermat,
1640).
e n = a2+ b 4 ¢? si et seulement si n n’est pas de la forme 4* (8n + 7) (Legendre, 1801).
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Un probleme additif

Un dernier exemple

e Est-ce que tout entier peut s’écrire comme une somme de carrés ?

o n = a? + b2 si et seulement si pour tout p = 3 mod 4 divisant n, v,(n) est pair (Fermat,

1640).
e n = a2+ b 4 ¢? si et seulement si n n’est pas de la forme 4* (8n + 7) (Legendre, 1801).

e Tout n est somme de quatre carrés (Lagrange, 1770).
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Un probleme additif

Un dernier exemple

e Est-ce que tout entier peut s’écrire comme une somme de carrés ?

o n = a? + b2 si et seulement si pour tout p = 3 mod 4 divisant n, v,(n) est pair (Fermat,

1640).
e n = a2+ b 4 ¢? si et seulement si n n’est pas de la forme 4* (8n + 7) (Legendre, 1801).

e Tout n est somme de quatre carrés (Lagrange, 1770).
¢ Conclusion : le nombre minimal de carrés qui permet d’écrire tout nombre entier
est 4.
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Un probleme additif

Un dernier exemple

e Est-ce que tout entier peut s’écrire comme une somme de carrés ?

o n = a? + b2 si et seulement si pour tout p = 3 mod 4 divisant n, v,(n) est pair (Fermat,
1640).
e n = a2+ b 4 ¢? si et seulement si n n’est pas de la forme 4* (8n + 7) (Legendre, 1801).
e Tout n est somme de quatre carrés (Lagrange, 1770).
¢ Conclusion : le nombre minimal de carrés qui permet d’écrire tout nombre entier
est 4.

¢ Waring pose la question pour toute puissance plus grande que 2.
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Un probleme additif

¢ Hilbert montre en 1909, algébriquement et de maniere non effective, que pour tout
k > 2,il existe G(k) € N* tel que tout entier suffisamment grand est somme de
G (k) puissances k-iemes (sans donner de borne sur G(k)).
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Un probleme additif

¢ Hilbert montre en 1909, algébriquement et de maniere non effective, que pour tout
k > 2,il existe G(k) € N* tel que tout entier suffisamment grand est somme de
G (k) puissances k-iemes (sans donner de borne sur G(k)).

* On sait que G(2) = 4, et G(4) = 16 (Davenport) mais aucune autre valeur n’est
connue. Comment estimer G (k) en général ?
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La méthode du cercle de Hardy-Littlewood

e Pour tout n € N*, notons i ¢(n) = #{(a1,...,ac) € N* | af +--- +af =n}. On
veut montrer que pour £ assez grand et n suffisamment grand en fonction de £ et k,
T'k,[(n) > 0.
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La méthode du cercle de Hardy-Littlewood

e Pour tout n € N*, notons i ¢(n) = #{(a1,...,ac) € N* | af +--- +af =n}. On
veut montrer que pour £ assez grand et n suffisamment grand en fonction de £ et k,
T'k,[(n) > 0.

e On remarque que ry,¢(n) est le coefficient devant 2" de

4
n

Fraz)= | 3 2 | =Y mel)? + 2" P().

agnl/k' 7=0
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La méthode du cercle de Hardy-Littlewood

e Pour tout n € N*, notons r ¢(n) = #{(a1,...,a¢) € N | a¥ + ...+ af =n}. On
veut montrer que pour £ assez grand et n suffisamment grand en fonction de £ et k,
T'k,[(n) > 0.

e On remarque que ry,¢(n) est le coefficient devant 2" de

4
n

Fo@) = | >0 2| =Y re(i)s + 2" P(2).

agnl/k' 7=0

* On pourrait extraire ce coefficient par la formule

F7(0)
Tk, (Tl) = T )

mais il semble difficile de controler les dérivées de Fi, ..
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La méthode du cercle de Hardy-Littlewood

e Ala place, on utilise 1’égalité

1
Tk,[(n) :/ Fk’[(eQiWZ)e—QiTrnz dZL',
0

en vertu de la relation d’orthogonalité

/1 2imkx {ISIk_O
e dx = .
o 0 sinon.
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La méthode du cercle de Hardy-Littlewood

e Ala place, on utilise 1’égalité

1
Tk,[(n) :/ Fk’[(eQiWZ)e—QiTrnz dZL',
0

en vertu de la relation d’orthogonalité

/1 2imkx {ISIk_O
e dx = .
o 0 sinon.

1
/ Fk’l(einz)e—Qiﬂ'nz dz > O,
0

¢ Pour montrer que

on découpe [0, 1] en des "arcs majeurs”, oit Fy;(x) est grand en module, et en des
"arcs mineurs" ot1 I'intégrale sur ces arcs est négligeable par rapport a la
contribution des arcs majeurs.
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e Imaginons que k = 1. Alors (pour z ¢ Z),

¢
p2im(! P4l _ ‘ B }sin ((nl/k + l)mc) }é

2imx 2iTax
Fre(@ ™) =] Y e =

a<nl/k

|sin (7z)|*




e Imaginons que k = 1. Alors (pour z ¢ Z),

4 . ,
) . 2im(n*/F 41z _ 4 sin (( k4 1)
|Fk’£(e2z7rz)| _ Z eQwra,z _ e e2i7rx — _ } 1n ( n 71'33)}

a<nl/k

|sin (7z)|*

® Des estimations (beaucoup plus difficiles) de sommes d’exponentielles permettent
de généraliser a tout k£ > 1. De maniére générale, la taille de | Fx o(e*"™™)| est
controlée par la proximité de x aux rationnels.
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e Imaginons que k = 1. Alors (pour z ¢ Z),

4 . ,
) . 2im(n*/F 41z _ 4 sin (( k4 1)
|Fk’£(e2z7rz)| _ Z eQwra,z _ e 621_7‘_:6 — _ } 1n ( n 71'33)}

a<nl/k

|sin (7z)|*

® Des estimations (beaucoup plus difficiles) de sommes d’exponentielles permettent
de généraliser a tout k£ > 1. De maniére générale, la taille de | Fx o(e*"™™)| est
controlée par la proximité de x aux rationnels.

¢ Les arcs majeurs 91 sont alors choisis comment étant les « proches de rationnels £
avec ¢ "petit" (en fonction de k et £), et les arcs mineurs sont [0, 1] \ 9. (Il faut
optimiser beaucoup de parametres pour obtenir le résultat final...)

ytique des nombres 13 novembre 2024



e Imaginons que k = 1. Alors (pour z ¢ Z),

4 . ,
) . 2im(n*/F 41z _ 4 sin (( k4 1)
|Fk’£(e2z7rz)| _ Z eQwra,z _ e 621_7‘_:6 — _ } 1n ( n 71'33)}

a<nl/k

|sin (7z)|*

® Des estimations (beaucoup plus difficiles) de sommes d’exponentielles permettent
de généraliser a tout k£ > 1. De maniére générale, la taille de | Fx o(e*"™™)| est
controlée par la proximité de x aux rationnels.

¢ Les arcs majeurs 91 sont alors choisis comment étant les « proches de rationnels £
avec ¢ "petit" (en fonction de k et £), et les arcs mineurs sont [0, 1] \ 9. (Il faut

optimiser beaucoup de parametres pour obtenir le résultat final...)

* Hardy et Littlewood parviennent alors a G (k) = O(k2).

Alexandre Bailleul nalytique des nombres 13 novembre 2024



Un probleme additif

Imaginons que k = 1. Alors (pour x ¢ Z),

4 . ,
) . 2im(n*/F 41z _ 4 sin (( k4 1)
|Fk’£(e2z7rz)| _ Z eQwra,z _ e e2i7rx — _ } 1n ( n 71'33)}

a<nl/k

|sin (7z)|*

Des estimations (beaucoup plus difficiles) de sommes d’exponentielles permettent
de généraliser a tout k£ > 1. De maniére générale, la taille de | Fx o(e*"™™)| est
controlée par la proximité de x aux rationnels.

Les arcs majeurs 91 sont alors choisis comment étant les = proches de rationnels £
avec ¢ "petit" (en fonction de k et £), et les arcs mineurs sont [0, 1] \ 9. (Il faut
optimiser beaucoup de parametres pour obtenir le résultat final...)

Hardy et Littlewood parviennent alors a G (k) = O(k2).

La méthode du cercle a initialement été imaginée par Hardy et Ramanujan pour
établir que
I ~/Z

n) ~ e
) n—+oo 4dny/3
ol p(n) est le nombre de maniére d’écriren = A\ +---+ A avec A1 > --- > A\, > 1.

I
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Résultats récents

Quelques résultats récents

* La théorie analytique des nombres a une longue histoire et est toujours trés active.
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Résultats récents

Quelques résultats récents

* La théorie analytique des nombres a une longue histoire et est toujours trés active.

Théoreme. (Helfgott, 2013)

Tout nombre impair plus grand que 5 est somme de trois nombres premiers.
(Conjecture de Goldbach faible)
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Résultats récents

Quelques résultats récents

* La théorie analytique des nombres a une longue histoire et est toujours trés active.

Théoreme. (Helfgott, 2013)

Tout nombre impair plus grand que 5 est somme de trois nombres premiers.
(Conjecture de Goldbach faible)

Théoreme. (Zhang, 2013)

Il existe C' > 0 tel qu'il existe une infinité de nombres premiers consécutifs p < g
avecq —p < C.
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Résultats récents

Quelques résultats récents

* La théorie analytique des nombres a une longue histoire et est toujours trés active.

Théoreme. (Helfgott, 2013)

Tout nombre impair plus grand que 5 est somme de trois nombres premiers.
(Conjecture de Goldbach faible)

Théoreme. (Zhang, 2013)

Il existe C' > 0 tel qu'il existe une infinité de nombres premiers consécutifs p < g
avecq —p < C.

Théoreme. (Maynard, 2019)

11 existe une infinité de nombres premiers ne contenant pas le chiffre 7.
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Merci de votre attention !
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