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Théorie analytique des nombres

• Qu’est-ce que la théorie analytique des nombres ?

• La théorie des nombres s’intéresse à des questions concernant les nombres entiers :
• Est-ce que, pour n ≥ 3, l’équation xn + yn = zn admet des solutions avec x, y, z ∈ Z et

xyz ̸= 0 ?
• Est-ce que tout entier pair supérieur à 2 peut s’écrire comme la somme de deux nombres

premiers ?
• Soit n ∈ N∗. Existe-t-il un triangle rectangle à côtés rationnels dont l’aire vaut n ?
• Soit m ≥ 2. De combien de manières est-il possible d’avoir m =

(
n
k

)
?

• Sa partie analytique utilise des outils d’analyse (limites, continuité, analyse
complexe, intégration, etc.) pour répondre à ces questions.

• Elle est particulièrement adaptée pour étudier les nombres premiers.
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Infinité de nombres premiers

Une preuve vieille comme le monde

Théorème. (Euclide, -300 av. J.-C.)

Il existe une infinité de nombres premiers.

• Si p1, . . . , pr sont des nombres premiers, on pose N = 1 + p1 × · · · × pr .

• Alors N ≥ 2 donc admet un facteur premier p. Mais p ̸= pi sinon p diviserait
N − p1 × · · · × pr = 1 !

• Donc la liste p1, . . . , pr est incomplète.

• On peut extraire de la preuve d’Euclide que pn = O
(
22n)

(très mauvais...).
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Infinité de nombres premiers

Euler

• En 1748, Euler pose

P (x) =
∏
p≤x

1
1 − 1

p

.

• Alors par produit de Cauchy on a

P (x) =
∏
p≤x

+∞∑
k=0

1
pk

=
∑
n≥1

p|n⇒p≤x

1
n

≥
∑

1≤n≤x

1
n

≥ ln(x).

• Mais on a aussi

ln(P (x)) =
∑
p≤x

− ln
(

1 − 1
p

)
=

∑
p≤x

1
p

+
∑
p≤x
k≥2

1
kpk

=
∑
p≤x

1
p

+O(1).
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Infinité de nombres premiers

Euler

• Conclusion : ∑
p≤x

1
p

≥ ln ln(x) +O(1).

• La série des inverses des nombres premiers diverge (très lentement), il y a donc une
infinité de nombres premiers !

• On peut l’expliquer par le fait que
∑

n

1
n

diverge.
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Infinité de nombres premiers

Compliquons la question

• Il existe une infinité de nombres premiers de la forme 4n+ 3

:
N = 4p1 × · · · × pr + 3 est congru à 3 modulo 4 donc a au moins un facteur premier
congru à 3 modulo 4 !

• Il existe une infinité de nombres premiers de la forme 4n+ 1 :
N = 4(p1 × · · · × pr)2 + 1 a un facteur premier p tel que
(2p1 × · · · × pr)2 ≡ −1 mod p d’où p ≡ 1 mod 4 (une racine carrée de −1 est un
élément d’ordre 4 dans le groupe (Z/pZ)×).

• Est-ce qu’il existe une infinité de nombres premiers de la forme 10n+ 3 (i.e. avec
pour chiffre des unités 3) ? Il semble compliqué d’en trouver une démonstration
élémentaire...
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Infinité de nombres premiers

Dirichlet

Théorème. (Dirichlet, 1837)

Soit a, q ∈ Z premiers entre eux. Alors il existe une infinité de nombres premiers
de la forme qn+ a.

• Conséquences :
• Une infinité de nombres premiers avec pour chiffre des unités 1, ou encore 3, ou 7, ou 9.

• Si n n’est pas de la forme 4a(8k + 7) alors il existe x, y, z ∈ N tels que n = x2 + y2 + z2

(théorème des trois carrés).

Si n est un carré modulo tout nombre premier alors n est un carré d’entier ("principe
local-global").
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Infinité de nombres premiers

Démonstration dans un cas simple

• Montrons le résultat à la manière de Dirichlet (inspiré d’Euler) pour q = 4 et a = 1.

On considère les produits

L1(s) =
∏
p̸=2

1
1 − 1

ps

et
L2(s) =

∏
p ̸=2

1

1 − (−1)
p−1

2
ps

pour s > 1.

• Alors comme avant
lnL1(s) =

∑
p̸=2

1
ps

+O(1)

et

lnL2(s) =
∑
p ̸=2

(−1)
p−1

2

ps
+O(1).
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Infinité de nombres premiers

Démonstration dans un cas simple

• On en déduit que

1
2(lnL1(s) + lnL2(s)) =

∑
p≡1 mod 4

1
ps

+O(1).

• Or
L1(s) =

∑
n impair

1
ns

et

L2(s) =
∑
n≥1

(−1)n

(2n+ 1)s
.

• Donc lnL1(s) →
s→1+

+∞ et lnL2(s) →
s→1+

ln
(

π
4

)
.
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Infinité de nombres premiers

Démonstration dans un cas simple

• Conclusion :
∑

p≡1 mod 4

1
ps

→
s→1+

+∞ et il existe une infinité de nombres premiers de

la forme 4n+ 1.

• On peut l’expliquer par le fait que
∑

n

1
n

diverge et L2(1) = π
4 ̸= 0 !

• Plus généralement, chaque cas traité par Dirichlet repose sur le fait que L(1) ̸= 0
pour certaines fonctions L, et c’est la partie la plus difficile de la démonstration.

• On ne sait pas se passer d’analyse pour démontrer ce résultat !
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Quantité de nombres premiers
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Quantité de nombres premiers

Une nouvelle question

• Il y a une infinité de nombres premiers (y compris dans des progressions
arithmétiques).

• Question : Peut-on dire combien il y en a en-dessous d’une borne x grande ?

Conjecture (Gauss, 1793).

Si π(x) = #{p ≤ x}, alors
π(x) ∼

x→+∞

x

ln x .
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Quantité de nombres premiers

Quelques observations

• Cela donne pn ∼
n→+∞

n lnn.

• Cela implique que π(x)
x

→
x→+∞

0 : les nombres premiers se raréfient quand x devient

grand (théorème de Legendre, 1808). Autrement dit, ils ont une densité nulle dans
les entiers.

• C’est cohérent avec le
∑
p≤x

1
p

≥ ln ln(x) +O(1) d’Euler (on a même un équivalent).

• Beaucoup de conséquences de statistique arithmétique, par exemple si ω(n) désigne
le nombre de facteurs premiers de n, alors

1
x

∑
n≤x

ω(n) = 1
x

∑
n≤x

∑
p|n

1 = 1
x

∑
p≤x

∑
n≤x
p|n

1 = 1
x

∑
p≤x

⌊
x

p

⌋

=
∑
p≤x

1
p

+O(1) = ln ln(x) +O(1).

("Un entier inférieur à x a en moyenne ln ln(x) facteurs premiers")
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Quantité de nombres premiers

Idées de démonstration

• L’équivalent π(x) ∼
x→+∞

x
ln x

est appelé le théorème des nombres premiers (ou

TNP), démontré par Hadamard et de la Vallée-Poussin en 1896).

• La démonstration repose sur l’étude de la fonction

ζ : s 7→
+∞∑
n=1

1
ns
, Re(s) > 1.

• L’apport de Riemann par rapport à Euler est de considérer s comme variable
complexe et d’utiliser l’analyse complexe.
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Idées de démonstration

• On a vu que

ζ(s) =
∏

p

1
1 − 1

ps

pour Re(s) > 1.

• L’analyse complexe permet de prolonger de manière unique ζ en une fonction
"raisonnable" (holomorphe) sur C \ {1}.

• La clé pour démontrer le TNP est de localiser les zéros de ζ.
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Quantité de nombres premiers

Quel rapport avec les zéros ?

• Pour des raisons techniques, posons

ψ(x) =
∑

p,k∈N∗

pk≤x

ln p.

• On montre que

π(x) =
∑
p≤x

1 = ψ(x)
ln(x) + o

(
x

ln(x)

)
.

• Avec encore plus d’analyse complexe, on montre la formule explicite suivante :

ψ(x) = x−
∑

ρ
ζ(ρ)=0

xρ

ρ
− ln(2π).
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Illustration
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Quantité de nombres premiers

• Comme ∣∣∣∣xρ

ρ

∣∣∣∣ = xRe(ρ)

|ρ| ,

comprendre la taille de ψ(x) (et donc de π(x)), c’est comprendre la localisation des
zéros de ζ.

• En particulier, on montre que le TNP est équivalent au fait que ζ(1 + it) ̸= 0 pour
tout t ∈ R∗ !

• Toute amélioration de cette information améliore le terme d’erreur dans le TNP. La
meilleure estimation possible correspond au fait que ζ(ρ) = 0 (et Re(ρ) > 0)
implique que Re(ρ) = 1

2 (hypothèse de Riemann).
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Un problème additif

Un dernier exemple

• Est-ce que tout entier peut s’écrire comme une somme de carrés ?

• n = a2 + b2 si et seulement si pour tout p ≡ 3 mod 4 divisant n, vp(n) est pair (Fermat,
1640).

• n = a2 + b2 + c2 si et seulement si n n’est pas de la forme 4k(8n + 7) (Legendre, 1801).
• Tout n est somme de quatre carrés (Lagrange, 1770).

• Conclusion : le nombre minimal de carrés qui permet d’écrire tout nombre entier
est 4.

• Waring pose la question pour toute puissance plus grande que 2.
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Un problème additif

• Hilbert montre en 1909, algébriquement et de manière non effective, que pour tout
k ≥ 2, il existe G(k) ∈ N∗ tel que tout entier suffisamment grand est somme de
G(k) puissances k-ièmes (sans donner de borne sur G(k)).

• On sait que G(2) = 4, et G(4) = 16 (Davenport) mais aucune autre valeur n’est
connue. Comment estimer G(k) en général ?
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Un problème additif

La méthode du cercle de Hardy-Littlewood

• Pour tout n ∈ N∗, notons rk,ℓ(n) = #{(a1, . . . , aℓ) ∈ Nℓ | ak
1 + · · · + ak

l = n}. On
veut montrer que pour ℓ assez grand et n suffisamment grand en fonction de ℓ et k,
rk,ℓ(n) > 0.

• On remarque que rk,ℓ(n) est le coefficient devant zn de

Fk,ℓ(z) =

 ∑
a≤n1/k

zak

ℓ

=
n∑

j=0

rk,ℓ(j)zj + zn+1P (z).

• On pourrait extraire ce coefficient par la formule

rk,ℓ(n) =
F

(n)
k,ℓ (0)
n! ,

mais il semble difficile de contrôler les dérivées de Fk,ℓ.
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Un problème additif

La méthode du cercle de Hardy-Littlewood

• À la place, on utilise l’égalité

rk,ℓ(n) =
∫ 1

0
Fk,ℓ(e2iπx)e−2iπnx dx,

en vertu de la relation d’orthogonalité∫ 1

0
e2iπkx dx =

{
1 si k = 0
0 sinon.

• Pour montrer que ∫ 1

0
Fk,l(e2iπx)e−2iπnx dx > 0,

on découpe [0, 1] en des "arcs majeurs", où Fk,l(x) est grand en module, et en des
"arcs mineurs" où l’intégrale sur ces arcs est négligeable par rapport à la
contribution des arcs majeurs.
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Un problème additif

• Imaginons que k = 1. Alors (pour x ̸∈ Z),

|Fk,ℓ(e2iπx)| =

∣∣∣∣∣∣
∑

a≤n1/k

e2iπax

∣∣∣∣∣∣
ℓ

=

∣∣∣∣∣e2iπ(n1/k+1)x − 1
e2iπx − 1

∣∣∣∣∣
ℓ

=

∣∣sin (
(n1/k + 1)πx

)∣∣ℓ

|sin (πx)|ℓ
.

• Des estimations (beaucoup plus difficiles) de sommes d’exponentielles permettent
de généraliser à tout k ≥ 1. De manière générale, la taille de |Fk,ℓ(e2iπx)| est
contrôlée par la proximité de x aux rationnels.

• Les arcs majeurs M sont alors choisis comment étant les x proches de rationnels p
q

avec q "petit" (en fonction de k et ℓ), et les arcs mineurs sont [0, 1] \ M. (Il faut
optimiser beaucoup de paramètres pour obtenir le résultat final...)

• Hardy et Littlewood parviennent alors à G(k) = O(k2k).

• La méthode du cercle a initialement été imaginée par Hardy et Ramanujan pour
établir que

p(n) ∼
n→+∞

1
4n

√
3
eπ

√
2n
3 ,

où p(n) est le nombre de manière d’écrire n = λ1 + · · · + λr avec λ1 ≥ · · · ≥ λr ≥ 1.
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Résultats récents

Quelques résultats récents

• La théorie analytique des nombres a une longue histoire et est toujours très active.

Théorème. (Helfgott, 2013)

Tout nombre impair plus grand que 5 est somme de trois nombres premiers.
(Conjecture de Goldbach faible)

Théorème. (Zhang, 2013)

Il existe C > 0 tel qu’il existe une infinité de nombres premiers consécutifs p < q
avec q − p ≤ C.

Théorème. (Maynard, 2019)

Il existe une infinité de nombres premiers ne contenant pas le chiffre 7.
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Résultats récents Merci !

Merci de votre attention !
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